
Structural Search and Replace:
What, Why, and How-to

1Copyright © 2006 JetBrains s.r.o. All rights reserved.

Important notes about the user interface
and how SSR works

Code templates

The user interface of SSR (Figure 1 and 2) was made
as close to conventional search-and-replace as possible.
We still need to enter a search string and maybe a
replacement string, and specify the case sensitive option.
However the similarities end at this point. The search
and replace strings in SSR will be, in fact, the code
fragments (templates) we would like to find or replace.
Any template entered should be a well formed Java
construction of one of the following types:		

An expression, like 	
ProcessCancelledException()	
A statement or sequence of statements, like: a = b;	
A class, e.g. class A implements B {}		
A comment or javadoc comment, e.g. /** @beaninfo */

Note: The Copy existing templates button allows you to
quickly pick up one of many pre-built Java construction
templates (class, methods, ifs, etc) and user defined
templates(if any), so quite often there is no need to enter
code patterns unless there is some selection of existing
source code.

Imagine that we have a large source code-base that we need to browse or
modify it. For instance, we might want to use a library and find out how it
works, or we might need to get acquainted with existing code and to modify
it. Yet another example is that a new JDK becomes available and we are
keen to see the changes in the standard Java libraries and so on. Conventional
tools like find and replace text may not completely address these goals
because when we use them, it is easy to find or replace too much or too little.
Of course, if someone already knows the source code well, then using the
whole words option and regular expressions may help make our find-and-
replace queries smarter.

The problem of the conventional approach, even with regular expressions,
is that they just do not know anything about the syntax and semantics of the
source code we are using. This is why we combined the search-and-replace
feature with knowledge about the source code, producing the Structural
Search and Replace (SSR) feature.

The matching of the template code with source code is
accomplished mostly according to Java syntax rules.
This implies, for instance, that white spacing of the
template and source code is not significant. Certain
semantic knowledge is also applied during search, e.g.
the order of the class fields, methods or references in
an implements list is not significant.

The matching of the first two template types (see the list
of 4 types above) is accomplished strictly, i.e. a match
is found when an exact occurrence of the code is found.
On the other hand, matching of the third and forth
template types is done loosely, meaning that a match
could have other content not mentioned in the template.
For instance, the search template new Runnable() {}
will find all anonymous Runnable instances. The same
convenience shorthand is applicable for method bodies.
Thus, the following search template will find any
Runnable with a method called someMethod: 	

new Runnable() { void someMethod(); }	

References to classes, fields, variables, methods, etc.
are treated literally (e.g. search template a = b; matches
only a = b;) except for a case mentioned below.

Maxim Mossienko

Develop with pleasure! www.jetbrains.com

2Copyright © 2006 JetBrains s.r.o. All rights reserved.

Develop with pleasure!

www.jetbrains.com

Structural Search and Replace: What, Why and How-to
Maxim Mossienko

Figure 1 Structural Search dialog

Figure 2 Structural Replace dialog

Note: The SSR operates over the concrete syntax trees of
the source code and the supplied code templates. Thus,
using code templates with errors or applying SSR to source
code with errors ("red") could cause unexpected or undesired
effects.

Template variables

Simple code templates allow finding and replacing exact
source code. For instance, searching with the template

aaa instanceof String will always find exactly
this code. However, what if we want to find
<any_expression> instanceof String? To deal
with such problems, SSR has template variables, by
which I mean 'some source code reference'. Any reference
that looks like $NameOfReference$ is template variable,
where NameOfReference is any user defined name
permitted by the Java language. For instance, arg
on Figure 2 is such a template variable.

3Copyright © 2006 JetBrains s.r.o. All rights reserved.

A template variable matches a source code expression
if the expression fits within the user defined constraints
(if any) which specify what possible values the template
variable may have. Returning to the previous example
of finding source code like <any_expression>
instanceof String, we will simply use the template
$AnyExpression$ instanceof String. For example,
assume that we have the following piece of code in the
project:	

Log.assert(
context.getProvider().getAccessToken() 		
instanceof String);

In this case the search result according to the above
template will be:	

context.getProvider().getAccessToken()	 	
instanceof String

And the AnyExpression template variable will have
the match:	

context.getProvider().getAccessToken()	

Another important usage of template variables is that
whatever expression gets bound to the template variable
during the search, it can be used again in the search or
replace templates.

Yet another use of template variables is to mark the
variable with the 'This variable is the target of the search'
option (Figure 3). This means that each match of this
particular variable is included in the output of the search.
If in our previous example this option was enabled for

Figure 3 Edit variables dialog

the AnyVariable template variable, the search would
have produced the following output:	

context.getProvider().getAccessToken()	

By default, this option is off, and the result of the search
is each match of the entire search template.	

Note: SSR supports template variables only in certain
places, namely Java code references or names, strings,
simple comment contents, names of javadoc tags and their
values, and name/value pairs after a javadoc tag.

Introduction to template variable constraints

Consider we want to find all getters declared in the
particular class. To find them we could try to use method
search template like the one below:	

class ClassOfInterest { $GetterType$ 			
$GetterName$(); }

We will also enable the 'This variable is the target of the
search' option for the GetterName variable, since we
are looking for methods.

However, we also need to specify that we are looking
for all getter methods. This is where the template variable
constraints come into play. We could specify that a getter
method is one that has GetterName text which matches
the regular expression get.* so we enter this expression
into the 'Text / regular expression' field for the GetterName
variable (Figure 3). One more constraint that we need
to set is how many occurrences of the particular variable
we should match. By default, the minimum occurrences
count and maximum occurrences count are set to 1. If

Develop with pleasure!

www.jetbrains.com

Structural Search and Replace: What, Why and How-to
Maxim Mossienko

4Copyright © 2006 JetBrains s.r.o. All rights reserved.

we set the maximum value for GetterType and
GetterName to some larger value (say 1000), our
method declaration will be able to match any number of
methods from 1 to 1000.

Note: The constraints for specific template variables can
be set by pressing the Edit Variables button (Figure 2).

Let's explore the 'Text / regular expression' constraint
work in more detail. As it is performing a search, the
SSR matches template variables to source code
expressions. The source code expression corresponds
to some source code text. The 'Text / regular expression'
constraint means that the source code text must also
match a given regular expression for the match to be valid.

Note: Using regular expressions for text constraints also
means that you need to escape the regular expression
meta-characters like . () [] - ^ $ \ with one slash (e.g.
com\.intellij\.openapi\.editor\.Editor).

Returning to the previous example, we may want to find
all getters declared by a particular class and all its
descendants. In order to do so, we will set 'Apply
constraint within hierarchy' in the 'Text constraints' group
for the GetterName variable. Effectively, the option tells
the matcher to go into the type hierarchy when the match
is not found locally.

Yet another useful application of this option is to set it
for a template variable which represents some type.
When checking the constraint, the matcher attempts to
compare the source code type's name with the given
regular expression. If it fails, the matcher will then check
the type's super-class and so on. For instance, search
templates ($Type$) $Expr$ or $Expr$ instanceof
$Type$ with a text constraint for the Type variable set
to 'PsiElement' with the option ‘Apply the constraint within
hierarchy’ set will search for all casts to or instances of
classes that implement the interface PsiElement.

Let's cover in more detail the previously mentioned
constraints of minimum and maximum occurrences of
a template variable (in ‘Occurrence count’ group, Figure 3).
While matching the search template, the template variable
could receive not just one value (though this is the default
behaviour). but several ones from the same context,
or receive no value at all. We allow several matches by
setting the maximum occurrence count to a value larger
than one, and we allow zero matches by setting the
minimum occurrence count to 0. For instance, when
searching for 'any static method call of a particular class',
we may be not interested in the number of parameters
passed, so we can use the following search template:

	Utils.assertTrue($Parameter$);	

For the Parameter template variable, we specify
minimum occurrences as 0 and maximum occurrences
as some large value (say, 1000). While matching, the
Parameter variable will pick up zero or more parameter
expressions of the particular call. The commas separating
the particular parameters (if any) are not mentioned in the
search template, nor taken into account during the match,
since their presence has only a textual syntax meaning.

Yet another example of using the occurrence count
values is when searching for if statements. The search
template looks like following:	

if ($BooleanExpr$) {		
$ThenStatement$;	

} else {		
$ElseStatement$;	

}

For the ThenStatement and ElseStatement template
variables the minimum count constraint is set to 0 and
the maximum count is set to Integer.MAX_VALUE.	

Note: This search pattern will also find an if without an
else branch, since the latter is semantically equivalent to
an empty else.

I would like to know more about
the source

Finding all descendants of the class

Quite often we need to find all descendants of a particular
class. To search for such classes, use the template: 	

class $Clazz$ extends $AnotherClass$ {}

As the text constraint for the AnotherClass variable one
needs to specify the name of the base class for which
we are looking for descendants. Since we are looking
for any descendants of the base class we enable 'Apply
the constraint within the type hierarchy' option.	

Finding all such methods

In certain situations, one needs to look for many different
implementations of the same interface method. This can
be achieved with the following search pattern:		

class a {		
public void $show$();	

}

The text constraint for the show variable is 'show', and
'This variable is the target of the search' is enabled.

Develop with pleasure!

www.jetbrains.com

Structural Search and Replace: What, Why and How-to
Maxim Mossienko

5Copyright © 2006 JetBrains s.r.o. All rights reserved.

Finding in literals and comments
Consider that we want to find something in the string
literals of our program. For instance, we have some typo
in the title of a dialog and we need to find the exact
location. The corresponding search template is simple:
"$StringContent$", the text constraint for
StringContent is .*OurTypo.*. However, if we know in
advance that the typo is actually a word, then we can use
the 'Whole words only' option (with case sensitive search)
to perform an indexed source search, which would find it
faster. In this case, we set the text constraint as OurTypo.
The similar approach is used for searching in the
comments, just the search pattern used is different,
namely: // $LiteralContent$.

Finding specific usages

We may be interested in finding all calls of a particular
method on instance variables of a particular descendant
type. For instance, find 'equals' calls that are called from
instances of the String class. The search pattern would
be: $instance$.equals($argument$). Text / regular
expression constraint for the instance template variable
would be String.

I'm tired of manually editing similar
things over and over

Upgrading a library

Quite often, a library's evolution is out of our control. Not
all of them preserve backward API compatibility, so you
have to change existing code extensively after a major
update of a third-party library. For instance, when we
were upgrading from Xerces 2.0 to 2.6.2, we needed to
replace DOMInputSourceImpl with DOMInputImpl.
This was achieved with the following settings:	

Search template: $InputSourceImpl$.	
Text constraint: 'DOMInputSourceImpl'.
Replacement template: DOMInputImpl.

I want to change the classes

Consider we want to change the parent for many classes,
e.g. from bare TestCase to OurHomeGrownTestCase.
It is convenient to use Structural Search and Replace
to accomplish this with following settings.

Search template:	
class $TestCase$ extends TestCase {			

$MyClassContent$
}

Replacement template:	
class $TestCase$ extends OurHomeGrownTestCase { 		

$MyClassContent$	
}

The minimum and maximum occurrence counts for the
MyClassContent variable should be set 0 and
Integer.MAX_VALUE respectively.

Tip: This way, one could also quickly insert or remove a
default implementation of an interface method in many
classes when a new method is added or removed from the
interface.

Note: In case of using the short name of a class in the
example above, IDEA will detect that the class is not
imported yet, and will suggest automatically adding the
necessary import statement where needed.
As for the replaced class, it may, vice versa, need a removal
of the redundant imports. This can be easily achieved by
calling the 'Optimize Imports' command.

Heavy refactoring: Static utility method
calls -> singleton instance method calls
One of our classes, MakeUtil, was completely refactored
during its move to the Open API. All its static methods
became instance methods and needed to be called from
a singleton instance. The problem was hard due to the
fact that we have two such classes in different packages.
After modifying the class itself, we needed to update all
the usages. Here's how we made the static class update
with Structural Search and Replace.

Search template:	

com.ij.j2ee.MakeUtil.$MethodCall$($Params$)	

Replace template:	

com.ij.j2ee.MakeUtil.getInstance().$MethodCall$			
($Params$)

Constraints:
Minimum and maximum occurrences count for Params
variable was set to 0 and 100 respectively.	

Note: Fully qualified class names in the search template
tells the matcher exactly which class to match for the static
method call, but it will be matched with either the FQ name
or the short name in the source code. Similarly, the fully
qualified class name in the replace template is left as-is if
the option ‘Shorten fully qualified names’ (Figure 2) is turned
off. If it is turned on, then the short name of the class is
used, possibly with an import statement added.

Develop with pleasure!

www.jetbrains.com

Structural Search and Replace: What, Why and How-to
Maxim Mossienko

